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Chapter 1
Introduction: From Dissent to Dismissal: 
Brouwer’s Journey in Mathematical 
Annals

Abstract  Scientific revolutions are often told as stories of triumph, yet histories of 
failure to revolutionize science are equally revealing. This introduction begins with 
L.E.J. Brouwer’s attempt to re-found mathematics on intuitionistic grounds, a bold 
program that mobilized worldwide debates in the 1910s and 1920s but ultimately 
lost ground. By foregrounding this “unsuccessful” revolution, the book highlights 
how resistance, controversy, and eventual dismissal illuminate the social fabric of 
science. In dialogue with post-Kuhnian models of scientific change, Brouwer’s 
story illustrates how intellectual projects are shaped not only by conceptual rigor 
but by institutional politics, group loyalties, and interpersonal tensions. The chapter 
frames intuitionism as more than a failed school: it is a case study in the dynamics 
of dissent, showing how the mathematics of the early twentieth century was forged 
at the crossroads of ideas and communities.

At the turn of the twentieth century, a whirlwind of transformation swept the world, 
leaving an indelible mark on history. Wars reshaped the world order, social move-
ments fought for equality, and technological leaps altered the fabric of society. 
Aviation pioneers took flight, while groundbreaking scientific theories challenged 
established norms. For example, the field of psychology was transformed by the 
emergence of Freud’s psychoanalysis and Watson’s behaviorism, reshaping the 
understanding and treatment of human behavior. Physics was revolutionized by 
Albert Einstein’s theory of relativity, which fundamentally altered our understand-
ing of time, space, and gravity, moving away from the Newtonian mechanics that 
had dominated for centuries. Meanwhile, in biology, the rediscovery of Gregor 
Mendel’s work on genetics at the beginning of the century ignited the field of genet-
ics, shifting the study of heredity to a molecular level and setting the stage for mod-
ern biology. Each of these examples is a successful “breakthrough”—a discovery 
that solves a problem or overcomes a barrier and eventually transforms science.

However, while successful transformations often steal the spotlight, I embark on 
a journey in this book to illuminate a lesser-known tale—a failed revolutionary 
attempt in the realm of mathematics, where one mathematician, named Brouwer, 
aimed to solve a fundamental problem in the foundations of the discipline, sparking 
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a decade-long debate. This story, which didn’t seize victory but never faded from 
discussion, serves as a unique lens through which we can reflect on the nuances of 
historical narratives and the impact of unsuccessful revolutions on our collective 
understanding.

Success in science is often seen by the scientific community as an advancement 
that resolves a challenge, shifts existing frameworks, and significantly alters our 
understanding. Failure, on the other hand, doesn’t necessarily mean a lack of contri-
bution. Consider Lamarck’s early evolutionary theory, which incorrectly suggested 
that traits acquired during an organism’s life could be passed on to offspring. Though 
ultimately replaced by Darwinian evolution, Lamarck’s ideas spurred debate, influ-
encing the development of evolutionary thought and highlighting how even unsuc-
cessful attempts can push the boundaries of knowledge.

A relevant aspect of successes and failures in science is that they are not simply 
binary; they often interact in ways that drive knowledge forward. Successful theo-
ries can emerge from the ashes of failed ideas, and failed attempts can illuminate 
new paths for exploration. Lamarck’s theory, though flawed, sparked critical debates 
that laid groundwork for future evolutionary theories. Thus, success and failure in 
science can complement and influence each other, showing that scientific progress 
is a continuous dialogue, one marked by ongoing discussions, where even unsuc-
cessful efforts contribute to the broader understanding of the natural world.

Unsuccessful scientific revolutions, though often relegated to the margins of his-
torical narratives, are vital to our comprehensive understanding of scientific evolution. 
They underscore the paramount importance of consensus and the rigorous process of 
peer review, illustrating that science progresses through a collaborative rather than 
solitary endeavor. These attempts frequently clash with entrenched paradigms, reveal-
ing the conservative nature of scientific communities that favor stability and stepwise 
innovation over radical departures. Beyond the realm of empirical data and logical 
constructs, the fate of these revolutions is also deeply intertwined with sociocultural 
currents that can either hinder or hasten scientific acceptance. The tales of these not-
quite-successful ventures serve as a beacon for future scientists, embodying the cour-
age required to question the status quo and the resilience to withstand criticism. Taken 
together, these elements weave a complex tapestry that portrays scientific advance-
ment not merely as a sequence of triumphant discoveries but as a nuanced, deeply 
social endeavor, marked by debate, collaboration, and disagreement at times.

Some see mathematics as unique among the sciences for its potential to be revolu-
tionized, though such revolutions are often considered less frequent compared to other 
fields (Ferreira and Silva 2020; Wigderson 2019). It is largely assumed that mathe-
matics, being cumulative and axiomatic, tends to refine or build upon existing theories 
rather than completely overturning them (Crowe 1975). Consider calculus for exam-
ple: it emerged from centuries of earlier work, including methods by Greek mathema-
ticians like Archimedes for approximating areas and medieval studies of sequences 
and infinitesimals. These concepts were extended into a formal system by Newton and 
Leibniz, creating powerful tools for mathematics and physics. Calculus is grounded in 
the axioms of algebra and geometry, which provided a logical framework for its prin-
ciples, such as limits, derivatives, and integrals. Rather than discarding the founda-
tional theories of algebra and geometry, calculus built on them, offering new ways to 
understand motion, curves, and areas. Later refinements by mathematicians like 
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Cauchy and Weierstrass further formalized calculus, enhancing its rigor without dis-
rupting its core principles, exemplifying the continuous and cumulative nature of 
mathematical developments. Such gradual developments are thought to provide a 
sense of stability, where changes are viewed more as expansions than disruptions. 
Unlike empirical sciences, where new experimental data can drastically alter existing 
paradigms, mathematics deals with abstract concepts that are generally seen as uni-
versally true and not dependent on physical evidence. As a result, mathematical truths 
are often perceived as enduring indefinitely, unless proven otherwise.

Progress in mathematics is often characterized by deeper insights into known theo-
ries, the discovery of connections between various domains, or the development of 
more comprehensive models that unify disparate areas (Thurston 1995; Weisgerber 
2023). While these advances are revolutionary in scope, they may not be perceived as 
such because they build upon, rather than contradict, existing knowledge. Additionally, 
the stability of mathematical theories and the meticulous process required to verify 
new propositions contribute to the appearance of a slower pace of revolutionary 
change. The rigorous scrutiny needed for consensus and acceptance means that new 
ideas take time to be fully recognized and assimilated, adding to the impression that 
mathematics evolves more through steady progression than through abrupt upheavals.

Successful or not, every revolution attempt has historical roots. The history of 
mathematics is full of false starts and undertakings that came to nothing: disproved 
hypotheses, inadequate techniques, misguided theorizing, and much more. All of 
these belong in what Thomas Kuhn famously dubbed “normal science” (Kuhn 
1962). Kuhn drew our attention to the constitutive role played by a science’s shared 
normative framework in governing the day-by-day work of scientists and its scien-
tific assessment. However, his famous book failed to account for the rationality of 
framework replacement. He spoke there of the pressure exerted on a framework by 
accumulated anomalies and their attraction to the ambitious upstarts of the field. 
However, in his well-known likening of paradigm shifts to gestalt switches and 
religious conversions, he failed to account for the interpersonal aspect of such tran-
sitions: how interactions between individuals, communities, groups, and norms 
affect the trajectory of a revolutionary new theory.

Kuhn’s two-tier model of scientific knowledge and scientific work, and espe-
cially his focus on scientific revolutions, have given rise to a broad array of 
responses—some dismissive of his approach, some more constructively critical. In 
this book, I closely examine four post-Kuhnian accounts of scientific sea changes of 
the latter category, each shares at least something of Kuhn’s neo-Kantianism. Two 
of them were designed specifically to account for framework transitions in mathe-
matics, one to account for the history of time-space theories in physics, and one, 
though more general than the other three, was applied by its author to a detailed 
study in the history of algebra.

Yet unlike other works in the field, the idea here is to put the four accounts to the 
test of an unsuccessful twentieth century attempt to revolutionize mathematics. I am 
referring to the school of intuitionism, that was established by the Dutch mathemati-
cian Luitzen Egbertus Jan Brouwer, and played a major role in the debate about the 
foundations of mathematics from its inception.

Brouwer’s intuitionism is a philosophical-mathematical approach that expands 
on the idea that mathematics is a human product. It characterizes mathematics as a 
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collection of internally coherent mental constructs, offering an alternative to classi-
cal mathematics. In contrast to the Platonistic view that regards mathematical enti-
ties as independent Platonic objects, or the formalist-finitist approach that viewed 
mathematical entities as elements that can be reduced to formulas and axioms, intu-
itionism conceives them as mental constructions created in the mind. Given that 
these mental constructions are shaped by human creators situated in specific tempo-
ral, spatial, cultural, and societal contexts, intuitionism becomes a particularly 
intriguing case study for exploring the impact of group dynamics on individual 
mental constructions and understanding the interconnection between communal 
knowledge and intrasubjective knowledge.

The aim of this book is twofold. The first is to better understand by means of the 
four accounts why Brouwer’s intuitionistic endeavor was eventually abandoned by the 
mathematical community. The second aim is to shine a light on specific mathemati-
cians and how they responded to Brouwer’s ideas. Through these aims, I uncover 
insights into how the interplay of individuals, groups, norms, and institutions shape 
mathematical knowledge. Each of the four models address these goals somewhat dif-
ferently, and together they combine to provide a more complex understanding of such 
moments than any of the four alone, can offer. This book thus presents, for the first 
time, a full-fledged socially-oriented history of the rise and fall of Brouwer’s intuition-
ism. In doing so, it takes an initial stride toward a comprehensive, socially oriented 
narrative of the history of mathematics, encapsulating the intricate connections 
between individual mathematicians and the communities they inhabit.

1.1 � The Emergence and Demise of Brouwer’s Intuitionism

First, a word of clarification is in order. This book is not about Brouwer the person. 
There are several insightful and comprehensive accounts of Brouwer’s life, person-
ality, and work; most notable is Dirk van Dalen’s L.E.J Brouwer—Topologist, 
Intuitionist, Philosopher (van Dalen 2013). I have practically nothing to add to 
these compelling works. The focus of the current book is on Brouwer’s intuitionistic 
program, and on the reactions of the community and specific individuals, to it. 
Having said that, I find it impossible to consider a scientist’s work as completely 
separate from his personal and environmental circumstances. Hence, the following 
paragraphs will sketch, in a very brief and concise manner, the main characteristics 
of the rise and fall of Brouwer’s intuitionism with a glimpse of Brouwer’s personal 
life. Nevertheless, throughout the rest of the book, the personal aspects of Brouwer’s 
life will remain mostly in the shadows.

Luitzen Egbertus Jan Brouwer was born in 1881 at Overschie, a Rotterdam 
neighborhood, the second-largest city in the Netherlands. After a year, the family 
moved to Medemblik, where Brouwer spent his early school years, and a decade 
later, they moved again, this time to Haarlem, the capital of the province of North-
Holland. At the age of 16, Brouwer started his academic studies at the faculty of 
Mathematics and Sciences at the University of Amsterdam (UVA), where he first 
met the mathematics professor Diederik Johannes Korteweg and started to attend 
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his lectures. The correspondence between Brouwer and his close friend Carel 
S. Adama van Scheltema during Brouwer’s years at UVA portrays Brouwer as a 
sensitive and devoted young man, often prone to mood swings and occasional 
depression (van Dalen 2011).

After obtaining his doctorandus (a Dutch academic title equivalent to M.A. or 
M.Sc. degree) in 1904, Brouwer found himself torn between philosophy and math-
ematics as he had to reach a decision about the future direction of his scientific 
career. It is evident from his 1905 booklet Life, Art and Mysticism that Brouwer’s 
strong philosophical views did not dissolve during his years of academic studies 
(Brouwer 1905). Nevertheless, he decided to pursue a mathematical dissertation 
under the supervision of Korteweg. The dissertation marked the turning point in 
Brouwer’s engagement with the wider world, in the sense that Brouwer did not give 
up his mystic ideas, but he realized that he had to rephrase them or put them aside if 
he wants to make an impact as a mathematician.

Brouwer successfully defended his dissertation in February 1907. Between 1909 
and 1913, Brouwer dedicated his efforts to founding modern topology, while main-
taining his intuitionistic program as a side project. He introduced significant con-
cepts as part of classical mathematics, such as that of “mapping degree” and the 
so-called fixed point theorem (van Atten 2020; Brouwer 1911). After being 
appointed full professor ordinaries in 1913 (succeeding Korteweg) and joining the 
Mathematische Annalen’s editorial board in 1914, Brouwer publicly returned to his 
first and foremost interest and embarked on the systematic intuitionistic reconstruc-
tion of mathematics.

During the war years, Brouwer mainly reflected on the foundations of mathemat-
ics, in particular on infinite sequences, and his deliberations during that period cul-
minated in the publication of a series of three papers under the title “Founding 
mathematics independently of the logical theorem of the excluded middle” (Brouwer 
1918, 1919, 1923). These papers introduced the necessary tools for a systematic 
practice of constructive mathematics, including the intuitionistic versions of real 
numbers, the continuum, and elementary topology.

In 1919, an important meeting that would eventually set in motion the founda-
tional debate took place in Engadin. Brouwer received a visit from Hermann Weyl, 
David Hilbert’s prominent student and philosophy enthusiast who shared Brouwer’s 
deep concern regarding the problematic foundations of mathematics. A year later, 
Weyl sent Brouwer a draft of his paper, titled “On the new foundational crisis in 
mathematics”, where he refers to Brouwer as ‘the revolution’ (Weyl 1921, 99).

Brouwer, who greatly admired Hilbert, was extremely flattered by Weyl’s sup-
port. In September 1920, Brouwer introduced his foundational program, focusing 
on the core problems of mathematics, before the international mathematical forum 
at the Naturforscherversammlung at Nauheim. This “meeting of natural scientists” 
gathered mostly German scientists to discuss physics, mathematics, and medicine 
for the first time after the war. Among the 2500 participants were several prominent 
mathematicians, such as Felix Bernstein, Emmy Noether, Fritz Noether, Hermann 
Weyl, George Polya, Robert Fricke, Felix Hausdorff, Kurt Hensel, and others. 
Brouwer gave a talk titled “Does every real number have a decimal expansion,” in 
which he discussed the structure of the continuum. While his Nauheim lecture 
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remained rather neutral regarding the new intuitionistic concept of choice sequence, 
it did contain criticism of Hilbert’s theory of the solvability of mathematical prob-
lems.1 Such a critical presentation in an international setting set the stage for the 
events that followed, and the publication of Weyl’s advocative paper a year later 
made clear that Brouwer’s intuitionism could no longer be ignored. Hilbert was now 
forced to reply, and the foundational debate had officially started (van Atten 2017; 
van Dalen 1995; Hesseling 2003; Mancosu 1998; McCarty 2005; Putnam and 
Benacerraf 1984).

Throughout the 1920s, the foundational debate received hundreds of reactions 
from dozens of mathematicians (such as Alfred Errera, Paul Bernays, and Abraham 
Fraenkel), logicians (like Walter Dubislav and Oscar Becker), and philosophers 
(such as Hugo Dingler and Heinrich Scholz), among others. At the same time, 
Brouwer continued to develop his intuitionistic program and published another 
series of papers entitled “On the foundations of intuitionistic mathematics” in the 
Mathematische Annalen (Brouwer 1925, 1926, 1927). The papers presented a riper 
and more mature view of intuitionism, including refinements and corrections of 
some loose ends found in Brouwer’s previous trilogy. In 1924 Brouwer published 
an intuitionistic proof of the fundamental theorem of algebra with his doctoral stu-
dent B. de Loor (Brouwer and De Loor 1924), and in 1928 he published a refined 
analysis of the nature of spreads (Brouwer 1928). At the same time, while reforming 
mathematics and performing his academic duties, Brouwer participated in a small 
group of philosophers, linguistics and mathematicians named the “Signific Circle” 
whose members were Gerrit Mannoury and Frederik van Eeden, among others 
(Brouwer 1946; Kirkels 2013). Between 1922 and 1926, the group regularly con-
vened to discuss spiritual and political progress through language reform 
(Brouwer 1937).

Brouwer’s intuitionism played a major role in the foundational debate, but 
Brouwer’s intuitionistic ideas were poorly understood within the mathematical 
community. Mathematicians often confused Weyl’s theory with Brouwer’s theory, 
and they generally considered Brouwer’s intuitionism as “interesting news from the 
border provinces” (van Dalen 2013, 335) than as critical and important develop-
ments that should occupy one’s mind. Meanwhile, the debate continued to spread, 
reaching the rest of Europe, the US, and Russia, and in 1925 a substantial contribu-
tion to intuitionistic logic was made by the Soviet mathematician Andrey Nikolaevich 
Kolmogorov, where he formalized parts of Brouwer’s intuitionism and presented an 
elaborated account of the convoluted links between intuitionism, formalism, and 
other schools of thought (Kolmogorov 1925).

The year 1928 is often considered the turning point of the debate and the begin-
ning of the end for Brouwer’s intuitionistic program. As mentioned, Brouwer was 
part of the Mathematische Annalen‘s editorial board (one of its chief editors being 

1 Hilbert maintained that every mathematical problem could be solved or rejected. As he put it: 
“This conviction of the solvability of every mathematical problem is a powerful incentive to the 
worker. We hear within us the perpetual call: There is the problem. Seek its solution. You can find 
it by pure reason, for in mathematics there is no ignorabimus.” (Hilbert 1902, 455).
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Hilbert), for 14 years now. The Mathematische Annalen was the most prestigious 
mathematics journal at the time, and being one of its editors was considered the 
highest recognition for a mathematician. Despite Brouwer’s diligent editorial work, 
in 1928, Hilbert sent a request to the other chief editors, Blumenthal, Carathéodory, 
and Einstein, asking their permission to remove Brouwer from the journal’s edito-
rial board due to personal conflicts and mathematical differences. After extensive 
correspondence involving all parties, including publisher Ferdinand Springer and 
his legal advisors, Hilbert’s request was ultimately approved, leading to Brouwer’s 
removal from the Annalen’s editorial board (van Dalen 1990).

The course of events had tremendously affected Brouwer, who from that point 
onwards refrained from publishing in the Mathematische Annalen and convinced 
his student, Arend Heyting, to do the same (Posy 1998). As can be seen in Fig. 1.1, 
from 1929 onwards Brouwer never regained the energy to promote intuitionism as 
he did before, and his subsequent publications contributed little to the further devel-
opment of intuitionism (except for his short return in 1948 to introduce his work on 
the creating subject).2

Did Brouwer intend to revolutionize mathematics? Was he a man of strategic 
thinking, focusing on the effective ways to promote his program and devoting all his 

2 From a broader perspective, and compared to his successors (Heyting, Kleene, Troelstra, and their 
successors), Brouwer produced very little intuitionistic mathematics. His work on topology was 
not grounded on intuition, at least not in the sense that Brouwer understood the term in the late 
1910s. Between 1918 and 1928, Brouwer wrote several important papers, introducing his intu-
itionistic set theory and work on choice sequences, bar theorem, and fan theorem. However, from 
the 1930s onwards, Brouwer ceased to publish and intentionally took a step back from the founda-
tional debate, leaving it to be continued by the next generation.

Fig. 1.1  Brouwer’s publications per year from 1905 until 1955 (Annalen publications 
marked in red)
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efforts to do so? The lion’s share of Brouwer scholars rightfully portray Brouwer as 
a mathematician rather than a politician, his interest lying solely in developing his 
mathematical and philosophical ideas (van Atten 2004, 2020; van Dalen 2013; 
Hesseling 2003; van Stigt 1990). He had very few students, out of which Arend 
Heyting was his “only really gifted intuitionistic student,”3 and in the 1930s, 
Brouwer left him to continue the intuitionistic endeavor. Heyting formalized intu-
itionistic logic and mathematics, broadening intuitionism’s reach but diverging 
from Brouwer’s original vision (Heyting 1930a, b, c, 1980). Although Brouwer 
opposed any form of axiomatization, he supported Heyting’s direction and let him 
lead the foundational debate (van Stigt 1990). Rather than training students to carry 
on his own legacy, Brouwer preferred to focus on his mathematical work, allowing 
Heyting and others to shape the future of intuitionism.

Did Brouwer’s intuitionistic program fail? It certainly did not prevail in the sense 
that intuitionistic notions did not replace classical ones in everyday mathematics; the 
antinomies of Cantor’s set theory are still present, and undergraduate students encoun-
ter intuitionism only in advanced courses. On the other hand, different extensions of 
intuitionism continued to evolve throughout the years ranging over various disci-
plines.4 Heyting’s student, Anne Sjerp Troelstra, continued his supervisor’s work in 
formalizing intuitionistic logic and choice sequences, and Michael Dummett devel-
oped a philosophical basis for intuitionism by extending Heyting’s approach (Troelstra 
1969; Dummett 1977). Hermann Weyl’s interest in the foundations of mathematics, 
specifically his The Continuum, gave rise to a predicativist point of view which was 
extended by Solomon Feferman into a mathematical school of its own, namely, 
Predicativism (Feferman and Hellman 1995; Feferman 2005). More recent develop-
ments include semantic interpretations of intuitionism, connections to type theory and 
computer science, and employment of choice sequences to model indeterminacy in 
physics (Bezhanishvili and Holliday 2019; Martin-Löf 1984; Gisin 2019).

When discussing the failure of intuitionism to revolutionize mathematics, it’s 
essential to remember two key points. First, failure is not binary; it doesn’t imply 
lack of influence. Second, intuitionism specifically reflects Brouwer’s revolutionary 
views, distinct from later adaptations of his ideas. In philosophical discussions 
about intuitionism, intuitionism is often considered more broadly, encompassing 
constructive and philosophical themes rooted in Brouwer’s work. In this sense, intu-
itionism’s prosperity in contemporary philosophy has little to do with Brouwer’s 
version of intuitionism and more to do with philosophical developments to later 
versions of intuitionism.

Therefore, even though Brouwer’s intuitionism did not dominate mathematics, 
some intuitionistic arguments never ceased to be discussed. The debate about the 
legitimacy of Zermelo’s axiom of choice is a good example. In 1904, Ernst Zermelo 
introduced the axiom of choice to prove Cantor’s claim that every set can be well-
ordered (Zermelo 1904; Bell 2021). The introduction of the axiom provoked 

3 As documented in a letter from Brouwer to Weyl, 16.2.1928 (van Dalen 2011, 329–30).
4 In philosophy, for example, intuitionism has a seat at the table in almost every textbook on the 
philosophy of mathematics. Further analysis of the philosophical community’s engagement with 
Brouwer’s intuitionism can be found in Chap. 6.
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considerable criticism from the mathematical community, primarily from the French 
Semi-intuitionists Rene Baire, Emile Borel, and Henri Lebesgue. They argued that 
the axiom is not constructive as it only asserts the possibility of making several 
choices but does not indicate how choice functions can be defined (Diaconescu 
1975). On the other hand, Hilbert regarded the axiom of choice as an essential prin-
ciple of mathematics (Moore 1982). Poincaré disagreed with Hilbert, and in 1912 in 
a lecture on the status of set theory he delivered in Göttingen, Poincaré regarded 
Zermelo’s line of argument as nothing but a word game that lacked all mathematical 
substance (Gray 2012; Rowe 2018). Brouwer commented on Zermelo’s proof in his 
thesis in 1907, stressing that he agrees with the French semi-intuitionists’ critique 
(Brouwer 1907, 84). The discussion around the axiom of choice eventually led to 
Brouwer’s introduction of choice sequences (Jervell 1996).

However, the echoes of intuitionistic ideas in mainstream mathematics did not 
end there. Several books that were written after 1930 mention in a footnote or the 
preface that they are aware of the ongoing debate about the legitimacy of using the 
axiom of choice and made some adjustments accordingly. Van der Waerden’s 
Moderne Algebra and the differences between its three editions regarding the use of 
the axiom of choice demonstrate the evolution of such changes. One of the major 
differences between the first edition that came out in 1930 (van der Waerden 1930) 
and the second edition in 1937 is the complete omission of the parts which rest on 
the axiom of choice due to van der Waerden’s attempt to “avoid as much as possible 
any questionable set-theoretical reasoning in algebra (van der Waerden 1937, v).” 
However, in the third edition published in 1951 (van der Waerden 1951), the axiom 
of choice was reinstated. The decision to include or exclude the axiom of choice 
suggests that even when not accepted, intuitionistic ideas were not dismissed off-
hand but carefully reconsidered, at least by some mathematicians, time and again. 
This low-but-steady interest in Brouwer’s intuitionism makes it a rather unconven-
tional but telling case study for theories of framework transitions, especially for the 
four models examined in this book.

1.2 � Book Contours

The structure of the book follows a deliberate progression that mirrors the historical 
and conceptual development of intuitionism within mathematics and philosophy. 
Each chapter builds on the previous one to explore how individuals and communi-
ties can drive or hinder scientific change.

Chapter 2 introduces Brouwer’s intuitionism through Leo Corry’s model of 
mathematical frameworks, analyzing the contrasting versions proposed by Brouwer, 
Hermann Weyl, and Arend Heyting (Corry 1989, 2001). Using Corry’s distinction 
between the “body” and “image” of knowledge, the chapter shows how different 
conceptions of normative change shaped each approach. I conclude by asking 
whether philosophical commitments, such as Brouwer’s, can motivate mathemati-
cal transformation, which leads to the next chapter’s focus on the parallel connec-
tion between philosophy and science.

1.2  Book Contours
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Chapter 3 applies Michael Friedman’s model of parallel developments to 
Brouwer’s case (Friedman 2001, 2010). Friedman argues that scientific advances 
are often driven by philosophical breakthroughs, using Einstein’s general relativity 
as an example. Yet Brouwer’s philosophically motivated reformation failed to gain 
traction. I explore this tension by comparing Brouwer’s views with those of Kant, 
the French semi-intuitionists, and Poincaré, showing how his position diverged 
from each.

Chapter 4 turns to Lukas M. Verburgt’s post-Kuhnian historiography, which 
engages both Corry’s and Friedman’s accounts (Verburgt 2015). Drawing on 
Verburgt’s distinction between two kinds of a priori, I reinterpret Brouwer’s intu-
itionism as a shift between images of knowledge within the same a priori frame-
work. I also critically examine Verburgt’s reading of intuitionism’s influence on 
“Moscow mathematics,” particularly Aleksandr Khinchin, and highlight ambigui-
ties in his concept of epistemic breaks.

Chapter 5 shifts focus to Weyl, a key early supporter of intuitionism. Through 
Menachem Fisch’s model of normative indecision (Fisch 2010, 2017), I explore 
how Weyl’s philosophical ambivalence, especially concerning logical existence and 
the continuum, emerges from a complex process of self-deliberation and external 
critique. Comparing his trajectory with George Peacock’s hybrid work, I analyze 
how different forms of conceptual hybridity affect community reception.

While the first four chapters focus on responses from the mathematical commu-
nity, Chapter 6 examines how intuitionism has been received by philosophers. 
Through an analysis of major philosophical texts and collections, I show that intu-
itionism, though marginalized in mathematics, remains influential in philosophical 
discussions which suggests a divergent narrative of its significance.

Chapter 7 extends the analysis beyond formal structures to interpersonal and 
institutional dynamics. Through three case studies: (1) Weyl’s relocation from 
Göttingen to Princeton, (2) Brouwer’s engagement with the Significs group 
(Brouwer 1937), and (3) Brouwer’s conflict with Hilbert (van Dalen 1990), I illus-
trate how identity, professional displacement, and interpersonal tensions shape 
mathematical developments. The final chapter argues that mathematical change is 
influenced not only by logical and conceptual innovation but also by social, psycho-
logical, and institutional factors. By tracing these dimensions, the book offers a 
broader framework for understanding how robust scientific knowledge emerges 
through the interplay of individual agency and communal norms.
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